
THE DYNAMICS OF MISCIBLE INTERFACES:

A SPACE FLIGHT EXPERIMENT

T. Maxworthy

University of Southern California

E. Meiburg

University of California at Santa Barbara

ABSTRACT
Experiments as well as accompanying simulations are described that serve in preparation of a space

flight experiment to study the dynamics of miscible interfaces. The investigation specifically

addresses the importance of both nonsolenoidal effects as well as nonconventional Korteweg

stresses in flows that give rise to steep but finite concentration gradients.

The investigation focuses on the flow in which a less viscous fluid displaces one of higher viscosity

and different density within a nan'ow capillary tube. The fluids are miscible in all proportions. An

intruding finger forms that occupies a fraction of the total tube diameter. Depending on the flow

conditions, as expressed by the Peclet number, a dimensionless viscosity ratio, and a gravity

parameter, this fraction can vary between approximately 0.9 and 0.2. For large Pe values, a quasi-

steady finger forms, which persists for a time of O(Pe) before it starts to decay, and Poiseuille flow

and Taylor dispersion are approached asymptotically. Depending on the specific flow conditions,

we observe a variety of topologically different streamline patterns, among them some that leak

fluid from the finger tip. For small Pe values, the flow decays from the start and asymptotically

reaches Taylor dispersion after a time of O(Pe).

Comparisons between experinaents and numerical simulations based on the 'conventional'

assumption of solenoidal velocity fields and without Korteweg stresses yield poor agreement as far
as the Pe value is concerned that distinguishes these two regimes. As one possibility, we attribute

this lack of agreement to the disregard of these terms. An attempt is made to use scaling arguments

in order to evaluate the importance of the Korteweg stresses and of the assumption of solenoidality.

While these effects should be strongest in absolute terms when steep concentration fronts exist, i.e.

at large Pe, they may be relatively most important at lower values of Pe. We subsequently compare
these conventional simulations to more complete simulations that account for nonvanishing

divergence as well as Korteweg stresses. While the exact value of the relevant stress coefficients

are not known, ballpark numbers do exist, and their use in the simulations indicates that these

stresses may indeed be important. We plan to evaluate these issues in detail by means of comparing

a space experiment with corresponding simulations, in order to extract more accurate Korteweg
stress coefficients, and to confirm or deny the importance of such stresses.
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, Introduction and background

- effects of non-vanishing divergence

- non-conventional stresses

• Principle experiment: Miscible flow in a capillary
tube

• Simulations

• Preliminary conclusions
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Introduction and backero.u.nd

• Many applications give rise to steep concentration

gradients in the 'miscible interface' region that

separates miscible liquids:

- mixing devices

- chemical reactors

- materials processing applications

- biology and biomedical applications

- enhanced oil recovery

gllll

• Conventional analysis of such flows is based on

- divergence free velocity field

- Stokes or Navier-Stokes equations with

standard stress tensor

• How accurate is this approach?
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a) Divergence effects:

* continuity equation v . (p_)- o

Dp __
+pKT.u-O

Dt

* conventional assumption

Dp

Dt
=0 V-_-O

but: when the density of a fluid particle can change as

a result of diffusion

v._#o

this also leads to modifications in the conventional

Stokes or Navier Stokes equations

-> How important are these divergence effects in real

world applications?

!
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b) Non-conventional stresses:

• Korteweg (1901): additional stresses could

potentially be important in regions of large

concentration gradients ('Korteweg stresses')

• Mathematical form of these stress terms?

• Suggestions by Davis (1988), Joseph et al. (1996)

- how can the mathematical form be validated?

- what are the signs and numerical values of the

stress coefficients?

- estimates by Smith et al. (1981), Davis (1988),

Petiqeans and Maxworthy(1996):

_1 dynlcm, but time-dependent
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Indications that these stresses may be important in

many applications, e.g.:

- Joseph and Renardy (1993): drop of glycerin in

water (miscible), drop shape is similar to that of

immiscible drops

- Hu and Joseph (1992): miscible displacement in a

Hele-Shaw cell, evidence of an effective surface

tension?

Petitjeans and Maxworthy (1996), Chen and

Meiburg (1996): displacement of glycerin by

glycerin/water mixture in a capillary tube:

discrepancy between flow visualization and

simulations based on Stokes equation and

non-divergent velocity field

- additional attempts to extract 'effective surface

tension': Kurowski and Misbah (1994), Petitjeans

(1996), Petitjeans and Kurowski (1997)
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Principle experiment: Miscible flow _,n.a capillarv tube

Experiments: Petitjeans & Maxworthy (1996)

'Conventional' simulations: Chen & Meiburg (1996)

Main feature:

A finger of the injected, less viscous fluid propagates

along the centerline of the tube, leaving behind a film

of the resident fluid on the wail.
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Experimental and numerical observations:

• Miscible displacements: no truly steady state,

eventually Taylor dispersion is approached

• Large Pe: a quasisteady state evolves for the finger.

Tip velocity and fraction of more viscous fluid left

on the wall can be measured. They depend on

Ud
Pe=

* Peclet number t_)

* viscosity ratio

;_2--#i

#2+ #1

* density ratio F -- g
Ap d 2

* Small Pe: no quasisteady finger forms. Finger

quickly decays.
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Prelimina_, simulations

from Chen and Meiburg (1996), non-divergent,

conventional Stokes eqns. (Pe=l,600, At~100, F=0)

'standard' case:

i _| I_I •

0 0.5 i.O 1.5 _,0 Z,5 3,0
X

0.5

streamlines f

0 {9.5 1.0 1.5
.X

thickness of fluid film left on the wall:

0.65

0.60

m 0.55

OJ@

0.450

i

• = • 0

L_. °° o_1..1. =.oo ...... o°* • .-.--!_ ..J° • Pt,_,p _4 , , °. • .°,

: 0 "

..... "0............ "<_ ..... .0 ......... ; ..........

; 0.4 0.6 O.B t,O
,4t

good agreement experiments/simuIations

NASAICP--2000-210470 I 110



Experiment (Petitjeans and Maxworthy 1996):

measure fraction of more viscous fluid left behind

on the wall as function of Pe
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Comparison with immiscible data of Taylor (1961)

and Cox (1962) suggests value for an effective

surface tension coefficient
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fo  nQation of spike:
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• Low Pe: discrepancy between experiments and

numerical simulations: Experiments show

quasisteady finger at substantially lower values of

Pe than the numerical simulations

Indication of nonconventional stresses?

Note: these stresses should be largest when

concentration gradients are steep (large Pe), but

they could be relatively more important at lower

values of Pe.
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• ?-,.

preliminary simulations to evaluate the influence of

divergence and KOrteweg stresses:

* perform simulations based on Joseph's suggestions

for the form of the governing equations:

- split velocity field into solenoidal part and

!

divergent part

- postulate Korteweg stress terms with coefficients

of unknown size

-- + W_, O----_ W_-_r = D V: ck ..../ .

v (; ÷ Q(_)) = v. (2_D [_Z]+ ,_(v_ ® re)) + ;g

QI4,) = 3_tv_l 2+'9 2 2

#1

V.VV=0
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Pl

Pi -- P_

Pl - P:
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Possible space ,.experiment

Need detailed comparison between experiments and

numerical simulations at low Pe

• can't use horizontal tube on the ground, because

experimental flow is 3-d

can't use vertical tube on the ground, because the

experimental flow develops a 3-d instability at low

flow rates (low Pe)

• have to go to microgravity environment inorder to

obtain an axisymmetric flow in the experiment
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Peli_ina_ conclusi,,ons

s Fundamental questions regarding the validity of

the 'conventional' continuity and Stokes/Navier

Stokes equations in regions of steep concentration

gradients

• mathematical formulation and magnitude of

Korteweg stress coefficients are unknown, although

there are suggestions

• there are indications from experiments and

simulations that these stresses can be important

• plan to perform detailed comparison between

microgravity experiment and numerical

simulations in order to obtain more accurate

information
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